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L. INTRODUCTION

The problem addressed herein is the evaluation of asymptotic statistics for estimates
of autoregressive (AR) parameters from observations of mixed time series of known order.
The observed time series is considered to be mixed if the series is generated by an antoregres-
sive moving-average (ARMA) process or by an autoregressive process observed in additive
white noise (AR + N). It has been shown by Walker { 1] and Pagano [2] that a time s+ .
formed by the addition of an autoregressive process of order (M) and white noise shoulu ve
modeled as an ARMA process of order (M,M). In both cases the estimation of the AR param-
eters and the evaluation of estimate statistics are complicatzd by the mixed nature of the
observed time series.

For an AR process of known order Mann and Wald [3] showed that the least-squares
estimate of the process parameters coincides with their maximum likelihood estimate. It was
also proven in [3] that the least-squares parameter estimate errors are jointly multivariate
normal with zero mean and finite covariance matrix. The structure of the asymptotic
covariance matrix was also evaluated. Walker [1] was the first to examine estimating the
AR parameters for an AR + N process. In [1] the asymptotic efficiency and variance were
evaluated for a first order AR process observed in the presence of additive noise. For the
mixed ARMA process, Gersch [{4] proved that asymptotically unbiased est‘'mates of the AR
parameters can be obtained by using the “higher order” Yule-Walker equations. The structure
of the asymptotic covariance matrix was obtained, but asymptotic no-mality was not proven.

In this report, it is shown that the *‘higher order” Yule-Walker estimates of the AR
parameters for both types of mixed processes are asymptoticaliy jointly multivariate normal.
The structure of the asymptotic covariance matrix is calculated for both types of process.
The proof follows that of Kromer [5], in which a similar asymptotic normality result was
proven for an AR process without noise.

These results extend the work of Gersch [4] in that the estimates are shown to be
asymptotically jointly multivariate normal. The structure of the asymptotic covariance
matrix, obtained herein, is shown to be equivalent to that obtained by Gersch. The demon-

stration of asymptotic normality for the AR parameters for an AR + N process is a new result.

The evaluation of the structure of the asymptotic covariance matrix for the AR + N case
extends the result Walker [ 1] obtained for a first order AR process.

1. AM Waiker, Some consequences of superimposed error in time series analysis, Biometrika, vol 47,
p 33-43, 1960

2. M Pagano, Estimation of models of autoregressive signal plus white noise, Ann Statist, vol 2,no !,
p 99-108, 1974

3. HB Mann and A Wald, On the statistical treatment of linear stochastic difference equations,
Econometrica 11, p 173-200, 1943

4. W Gersch, Estimation of the autoregressive parameters of a mixed autoregressive maving average ume
series, IEEE Trans Automat‘Contr, vol AC-15, p 593-548, 1970

5. R Kromer, Asymptotic properties of the autor‘egressive spectral estimator, PhD Thesis, Dept of Statist,
Stanford, CA, 1969
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il. PARAMETER ESTIMATOR FOR MIXED SERIES

Assume that the observed discrete parameter time series {Yt} is a real, zero-mean,
stationary, normal process. The series {Yt} is generated by a mixed autoregressive moving-

average process of known order (M,M)
Ye-a) Yeop -t -ay Yeq =M =bymy =0 - by M

where the sequence {"t} is assumed to be independent, identically distributed (i.i.d.)
N(Q, o%). We evaluate the autocovariance function for this process by multiplying (1)
through by Yt—k' and, taking expectations term by term, we get

ElYpg Yel -2 Bl Yoy 1 =00 - ay ElY g Yiom]
=E[Yy_gx 1) -b) E[Yy g neg) =+ - by E[Y¢ e nem]
Since Y,_i depends only on inputs N4 for t-j < t-k, it follows that

0 k>
ElY 0 = .
ekt = Jry,  k<i

From (2) we see that the range of j is O to M. Defining Ry(k) =E[Y; Y;_y], wecan
write (2) as

Ry(k)—al Ry(k-l)- B )V Ry(k—M) =0 K=M+],M+2,...,2M

Define the (MXM) matrix Iy by

[Ry(M) Ry(M-1) ... Ry()]

Ry(M+1)  ...Ry()
NI

RyM-1) ... Ry(M)|

and the (MX1) vectors
}_\_T= [al, a2, ey aM]
R = [Ry(M+1), Ry(M+2), ..., Ry(2M)] .

The relationships defined by (3) can be written as
I'yA=Ry

tJ
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)
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These relationships are usually referrec to as the “higher order” Yule-Walker equations.

Define the covariance estimator by

l N- k|
Ry(k) = 'ﬁ Yt Yt + k|-

t=1

If the true covariances in I'; and Ry are replaced with the corresponding covariance

_f_'H &"'EH

estimates, the resulting matrix and vector are denoted by -f:H and 3-1—[ and the solution of

&)

provides consistent, but not efficient, estimates of the autoregr.ssive parameters for a mixed

autoregressive moving-average time series [6].

III. ASYMPTOTIC STATISTICAL PROPERTIES

In this section we prove that if the *“‘higher order” Y-W equations are used to estimate
the AR parameters of a mixed time series, the estimate errors are asymptotically jointly multi-

variable normal.

Define the following vectors:

BRI = [Ry(l), Ry(2), ..., Ry(2M)]

GT

—

= (e}, eiZ\ | i2MA,

QZM =[e7iN, emi2\ | emi2MA

- *
Upm = G2m Gy

v T
Uom = G2m Go

=11 +
Uom = Upm + Usy
T _
QM_[anp---aO]

Accession For

NTIS CRA&T _—_fg y
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DTIC TARB
Unannounceqd [';]
Jestificnt i'c.n__.__:..___
B e
By
| Distribution/

———

Availability Codes

Assumption I: (Y, } is a normal, real, zero-mean stationary time series and

o0

D) IkRy(l<o

k=-o0

v

6. E Parzen, Efficlent estimation of stationary time series mixed schemes, Stanford U, Tech Report

16 on contract Nonr-225(80), 1971

——




R o U, L

PO .

Ll ) v l‘ 1, - w .. ,‘ i.“l
o PSR g v i Al

&
.

-

Theorem 1:  Let {Y,} satisfy Assumption I, then
N4 [Ryh-Ry] ... W% [RyaM) - Ryam)]

are asymptotically jointly multivariate normal with zero mean and covariance structure given
by

lim  cov |N%Ry() - Ry(k), N% Ry} - Ry

N-+oo0
m
=2r [ lei(kﬂ)’wei(k‘i)’\ ¢§, W) d)\l (6)
—"‘ '

The asymptotic covariance matrix structure is given by

T
¥ =21 f Upy 45 VAN Q)

-r
Proof: This result follows ¢.rectly from Theorem 5.2 of Brillinger [7].
Lemma 1I: There exists a (MX2M) matrix D such that
D Rym-Rom) =Ry -Fya (8)
where
_aM LI ) _al i O LRI ] 0
Qa O_aMoou _allOUOOO
0 *** 0 -apg----al

Proof: This result follows directly fra:.. tae definition of the matrix D and the Y-W relation-
ship

Ry-Iy A=2

]

Lemma 2: Let {Y,} satisfy Assumption I and assume {Y,} is an ARMA (M,M) series.
The elements of the vector

N (EH-EH A)

7. DR Brillinger, As)Tnptotic properties of spectral estimates of second order, Biometrica, 56, 2,
p 375-390, 1969 -
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are asymptotically jointly multivariate normal with zero mean and covariance matrix
structure

lim  cov lNV2 Ry -By A N2 Ry -Ty A)T| =p¥ DT

N-+oo

n

=21 [ D Upm BT 63 oy an )
-"

Proof: From Lemma 1 we have that
('RH -fH A)=D (EzM - Rom)

Since D is a matrix of constants, we can conclude from Theorem 1 that the elements of
the vector

N2 Ry-B 8

are asymptotically jointly multivariate normal with zero mean and covariance matrix structure
given by equation (9) |

Lemma 3: Assume that {Yt} is an ARMA (M,M) series, then we have that

a-] P ~1
L‘H N->o0 'I-H

where the netation -ﬁ_%o—; indicates convergence as N=oe is “in probability.”

Proof: Given the previous definition of the (MXM) matrix I}y we have

RyM) RyM-1) -+ ﬁy(lﬂ

Ry(M+1) ror Ry(2)
Iy =

By(zM) . ﬁY(M)

thus, by Theorem 8B of Parzen (8] we can conclude

e P
Th o= In -
8. E Parzen, An approach to time series analysis, Ann Math Stat, vol 32, p 951-989, 1961
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! Gersch [4] proves that the matrix Iy is nonsingular; thus, I‘;ll exists. Since the matrix

2 2 L
inverse is a continuous function (from RM® 10 rRM ) on a neighborhood containing L'y,
it follows that

! a=l _P rl

Iy = Iy (10)

We now state and prove the main result of this report. In the course of the following
development we will use the notation

Cov [N#Q N4QT| 2+ @

§ This expression should be interpreted as implying that the vector of random variables N* Q
converses in probability, as N=+oo, to a vector of random variables that are jointly multivariate
normally distributed with zero mean and covariance matrix ©.

Theorem 2: Let {Y,} satisfy Assumption I and assume 1Y} isan ARMA (M,M) series,
then the AR parameter estimate errors

N @) -ap), NR(8)-a5), ..., N (B - ap)

are asymptotically jointly multivariate normal with zero mean and covariance matrix structure

given by
ov [N4 & -a), N4 A-AT| 2
CO a=4n), AT o N—>oo
n
-1 T,~~LT ,2
2”[ Ty DUy DTa@pT e 00 an (an
-
Proof: Define the (MX1) vector Z by
Z|N
2N A L a-l 1
-.d = . a 1 N ~ N % - M "
: z=| . S NATL Ry-By - N2 Ry-By )
! L]
IMN

By the results of Lemma 2 and Lemma 3 we can conclude that

kel -l s A P
_Z_‘NZ(EH 'EH)(B.H‘EH-A) 'N'_';: QM (12)
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: Let (2,9, P) be the underlying probability space. For arbitrary € > 0 and N > M define

3 Aen= |weq: iz <ei=1,2,... .M

X .

3 By (12) we have that for every (0, 1] there exists aN, . such that _

E ’ P(AG,N)>l_n >N€,17

; , But since |Z; N <€, fori=1,2,...,M, this implies the existence of the vector i
- t ae > 3

_[_‘_Hl (QH -_fH A) for all w € Ag . This result and (5) imply that we can write 1

P

E " A A §

P @-a=1} Ry-fya

;

. forall we Ae,N‘ Substituting this vesult into the definition of the vector Z we get

3

- Z =N”(3-:‘.‘.)-1*1"‘I;,l Ry-Lud 3

forall w € A, . Since the selection of € and n is arbitrary we can conclude that

- - P
NA@-A-NATY Ry - d) = o (13)

Therefore, applying Lemma 2, the stated result follows.

We have proven that, when the higher order Yule-Walker equations are used to
estimate the AR parameters of a mixed autoregressive moving-average process, the parameter P
estimation errors are asymptotically jointly multivariate normal with mean zero and covariance .

matrix structure given by

cov [NA@A-A), NAR-AT| 2y
.
2m ] I DU DT @7 430 ar
' x

Let us now examine the form of a typical element of this covariance matrix, but {irst look at
a typical element of D Uy DT, callit £, ;. We have

~21




Y T em— B L L Al T T T
r - = s

e - .
T e . ki = (52 e S mam— T BRI = —
. e — s —— 3 5 pmm = S — e

————— s L e ...+ i 5 = it B

%‘ M 2M
? 8" 2 2 % Ynmdm
; n=]l m=|
{ M 2M _ ‘
3 B z E dkn %jm (el(m=mA 4 ei(atm)A)
P n=l m=]
M 2M M 2M '
£ e i(n+ k
» n=] m=] n=l m=| v
E M M imA M in\ M imA %
; l‘ = E dkn ell‘lk 2 djm e + 2 dkn e Z djm e
- n=| m=] n=] m=|
! Examining each term independently, using the definition of the matrix D, and defining 3
1 “ «
(_ ANy =) - 2 3 expUN), we get
b =1 ;
. 2M K+M-1 | *
dyn el = _ Z 804 kon €7 + elMHKON i
n=| n=k ;
= AN ei(M+ION ]
and ‘
M JHM+1
- - o3 - +i
2 dipm € imA = _ E BM+jm © imX o-i(M+j)A
m=] msj

= A(ei)‘) e—IM+i)N\
We can now express £ jas
EkJ = A(e-ik) A(e“\) el(k=A 4 A(e-ik) A(e"n‘) el(k+A ei2M7\_

Define the matrix P by

L
T ,2

-




Wpﬁﬁﬂﬁ’!‘l&"d‘x,-ﬁ Wm 5 rl"!", TR ¥

a typical element of P, call it p j is given by

T

Py = 2m f B Oy AN
—ﬂ
T
=2n ] Ay Ay (kDN 62 oy an
-1r
" .
+op / Ay AN el e2Mh 62 o) an (14)
—W

At this point we state and prove the following Lemma.

Lemma4: Let {Y;} satisfy Assumption I and assume {Y;} is generated
by a mixed autoregressive moving-average process, then

T
m / (A(e-ik))z ei(k+j)7\ eiZMK ¢2Y M) dA=0

-

Proof: From the definition of the power spectral density for an ARMA process we can
write
~iAy 2
_ 7 B M|
oSN = 07 ———
\A n | A(e-ﬁ\)lz

M=

M
where B M) = 1= D7 by exp(-ith) and Ay =1-
£=1 n=1

a, exp(=in}).

Let

T
* . : : .
Pyj=2n [ (AeMy? kDR Gi2MA o8 (i) o
-1




then after the substitution for ¢Y(7\) given above we have

4 n . o~ 12
a i\ =iAy]
o = =% f (BEBE ) exp |ik+i+2Mn| ax
kj 2=« ( A(e"\))z
We can write '
(1= 2 apespeimy? = 3 D0 ¢, Cpy exp {itny+nph| ¢ ]
n=] nj=0 Ny= E
3
and with b, =1 '
M M ]
; (BN BEe™IZ = T e 37 by by by by, exp [i(e-Ly+e3-2eA| .
;! #1=0 f4=0
! Now, we have 7
04 1r M M oo oo ;
* e o 3
Pyj = 2—;:' [ 2 2 Z E le sz bQ3 bQ4 Cnl Cﬂz )
r Ql=0 Q4=0 nl=0 112=0

* exp ll[(k+]+2m) + (21“22"&3'24) + (n] + n2)] )\I dA

i b Sl s it s s et

g M M T oo oo
n

- D by by by by Y D G,
o 1% 837 1 Tmy

vexp |i[tny+ng) + (it 2M+2,-0+0 =21 A| @
From equation (3.56) of Kromer [5] we have that

m oo oo
f 2 2 CaCoyex |iGanytdn] dr=0ford>0 .
Z M0 ny0 j
*
thus it follows that ka =0 siilce

¢
k+j+2M+ 8 -8 +03-24>0

10
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By the result of Lemma 4 we have that

L]
pyj = 2% f AE) Aty ek o gy an

-X

We will now examine the form of this covariance term for two cases: (1) the observed
process { Y, } is a mixed autoregressive moving-average ARMA process and (2) {Y,} is the

sum of an autoregressive process plus white noise AR + N.

1. AUTOREGRESSIVE MOVING-AVERAGE CASE

We have previously stated that the power spectral density for the ARMA [rrocess is

given by
9 . .
oyv(A) = a; B(elk) B(e“")
Y 2 A(eﬂ) AN

Substituting this expression into (15) we get

n
Pk = °3, [ BlelM) B(e™iA) eilk-DA oy(D) dA
—'

Define ¢,(A) to be the power spectral density for the moving-average component of the

process; ie,

9,(\) = af, B(eiM) B(e™M)

Now we can rewrite (16) as

w
Pxj = f 8y (N) oy (V) etk gy
-
M
= D Rk
¢=-M

e et a e e

(15)

(16)

a7)
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M-
whiere, by detinition, r,(@ = o> 7 bybjroand Ry@ =E1Y, Yy g) .
i=0

We can write (17) as

M
Py =HORyk-d+ 2y 1,0 [Ry(ikti) + Ry (-2-k+)
Q=]

Define the matrix L‘Q element by element as PQ(k-j) = Ry (2-k+j) and P is the matrix of
elements Pk then we have

M
P=r@ % 2 n® [0+ T
2=|

Thus, our final result follows from (11),

~1

cov [N%&-a) N* A-a)T| 2o o PapT

H

which is equivalent to the result obtained by Gersch [4]. Gersch did not prove asymptotic
normality, but the forms of the asymptotic covariance matrices are equivalent.

2. AUTOREGRESSIVE PLUS NOISE CASE

It was shown by Walker [ 1] and Pagano [2] that when the observed time series is
generated by an AR process of order M plus white noise an ARMA (M,M) model as given by
(1) can be used to represent the series. If we let

Ye=Xg+ng

where X, is an AR process of order M and n, is i.i.d. N(O, orzl) then {Yt} can be represented

by (1) and the general covariance relationship of (11) applies. A more specific relationship,
that takes into account the properties of the AR + N series, is calculated below.

We can write the power spectral density for the AR + N process as
2
by = o 4 — =02 + ¢y
ydN =0 + ———+ % X\
n A(eﬁ\) A(e-lk) n




Substituting this expression into (15), we get i

4 5

(1) . . . .

Prj= —— Aty Ae™A) eilk=A gp
Joon
-
0.2 9.2 T "
L 2% % / eitk=DA dA + g 2 / dx(\) ellk=iiA gy
bl 4 B
-w

o4 , o
- 2_ f ANy A elk=DX g) + 20,2 0,2 8ik-j) + 0,2 Ry (k)
-

n
= 07 0 B(k-j) + 0’ Ry(k—j)+a“4 / AEM) ANy elk=DA gy
Ré 4 S
For the AR+N process we can express the matrix p as
4 n
P=0,2 052 14,2 _1:0+¥_ / AEM AETM G, QM" dA
r
o

and the final result is

cov N2 (A-A), N (A - A)T| 9 Ty -l P,HT.

IV. CONCLUSIONS

The estiriation of the AR parameters for mixed time series has been studied for two
types of mixed series—time series generated by an ARMA process and time series generated
by an AR process observed in white noise. In both cases the estimates have been shown to be
asymptotically jointly multivariate normal with zero mean and covariance matrix stracture
given by

V(a o Vara @ -1 -1.T
cov {N“(A-A),N*(A-A) o Oy P@yH)

where the form of the matrix Pis dependent on the type of mixed series assumed.

The results obtained relative to the asymptotic statistics associated with the AR+N
time series are of considerable interest to researchers working in the area of AR spectral
estimation of noisy signals.

13
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